Удельное электрическое сопротивление стали при различных температурах

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок в зависимости от температуры — в диапазоне от 0 до 1350°С.

В общем случае, удельное сопротивление определяется только составом вещества и его температурой, оно численно равно полному сопротивлению изотропного проводника, имеющего длину 1 м и площадь поперечного сечения 1 м2.

Удельное электрическое сопротивление стали существенно зависит от состава и температуры. При повышении температуры этого металла увеличивается частота и амплитуда колебаний атомов кристаллической решетки, что создает дополнительное сопротивление прохождению электрического тока через толщу сплава. Поэтому, с ростом температуры сопротивление стали увеличивается.

Изменение состава стали и процента содержания в ней легирующих добавок значительно сказывается на величине электросопротивления. Например, углеродистые и низколегированные стали в несколько раз лучше проводят электрический ток, чем высоколегированные и жаропрочные, которые имеют высокое содержание никеля и хрома.

Углеродистые стали

Углеродистые стали при комнатной температуре, как уже было сказано, имеют низкое удельное электросопротивление за счет высокого содержания железа. При 20°С значение их удельного сопротивления находится в диапазоне от 13·10-8 (для стали 08КП) до 20·10-8 Ом·м (для У12).

При нагревании до температур более 1000°С способность углеродистых сталей проводить электрический ток сильно снижается. Величина сопротивления возрастает на порядок и может достигать значения 130·10-8 Ом·м.

Удельное электрическое сопротивление углеродистых сталей ρэ·108, Ом·м
Температура, °С Сталь 08КП Сталь 08 Сталь 20 Сталь 40 Сталь У8 Сталь У12
0 12 13,2 15,9 16 17 18,4
20 13 14,2 16,9 17,1 18 19,6
50 14,7 15,9 18,7 18,9 19,8 21,6
100 17,8 19 21,9 22,1 23,2 25,2
150 21,3 22,4 25,4 25,7 26,8 29
200 25,2 26,3 29,2 29,6 30,8 33,3
250 29,5 30,5 33,4 33,9 35,1 37,9
300 34,1 35,2 38,1 38,7 39,8 43
350 39,3 40,2 43,2 43,8 45 48,3
400 44,8 45,8 48,7 49,3 50,5 54
450 50,9 51,8 54,6 55,3 56,5 60
500 57,5 58,4 60,1 61,9 62,8 66,5
550 64,8 65,7 68,2 68,9 69,9 73,4
600 72,5 73,4 75,8 76,6 77,2 80,2
650 80,7 81,6 83,7 84,4 85,2 87,8
700 89,8 90,5 92,5 93,2 93,5 96,4
750 100,3 101,1 105 107,9 110,5 113
800 107,3 108,1 109,4 111,1 112,9 115
850 110,4 111,1 111,8 113,1 114,8 117,6
900 112,4 113 113,6 114,9 116,4 119,6
950 114,2 114,8 115,2 116,6 117,8 121,2
1000 116 116,5 116,7 117,9 119,1 122,6
1050 117,5 117,9 118,1 119,3 120,4 123,8
1100 118,9 119,3 119,4 120,7 121,4 124,9
1150 120,3 120,7 120,7 122 122,3 126
1200 121,7 122 121,9 123 123,1 127,1
1250 123 123,3 122,9 124 123,8 128,2
1300 124,1 124,4 123,9 124,6 128,7
1350 125,2 125,3 125,1 125 129,5

Низколегированные стали

Низколегированные стали способны чуть более сильно сопротивляться прохождению электричества, чем углеродистые. Их удельное электросопротивление составляет (20…43)·10-8 Ом·м при комнатной температуре.

Следует отметить марки стали этого типа, которые наиболее плохо проводят электрический ток — это 18Х2Н4ВА и 50С2Г. Однако при высоких температурах, способность проводить электрический ток у сталей, приведенных в таблице, практически не различается.

Удельное электрическое сопротивление низколегированных сталей ρэ·108, Ом·м
Марка стали 20 100 300 500 700 900 1100 1300
15ХФ 28,1 42,1 60,6 83,3
30Х 21 25,9 41,7 63,6 93,4 114,5 120,5 125,1
12ХН2 33 36 52 67 112
12ХН3 29,6 67 116
20ХН3 24 29 46 66 123
30ХН3 26,8 31,7 46,9 68,1 98,1 114,8 120,1 124,6
20ХН4Ф 36 41 56 72 102 118
18Х2Н4ВА 41 44 58 73 97 115
30Г2 20,8 25,9 42,1 64,5 94,6 114,3 120,2 125
12МХ 24,6 27,4 40,6 59,8
40Х3М 33,1 48,2 69,5 96,2
20Х3ФВМ 39,8 54,4 74,3 98,2
50С2Г 42,9 47 60,1 78,8 105,7 119,7 124,9 128,9
30Н3 27,1 32 47 67,9 99,2 114,9 120,4 124,8

Высоколегированные стали

Высоколегированные стали имеют удельное электрическое сопротивление в несколько раз выше чем углеродистые и низколегированные. По данным таблицы видно, что при температуре 20°С его величина составляет (30…86)·10-8 Ом·м.

При температуре 1300°С сопротивление высоко- и низко- легированных сталей становится почти одинаковым и не превышает 131·10-8 Ом·м.

Удельное электрическое сопротивление высоколегированных сталей ρэ·108, Ом·м
Марка стали 20 100 300 500 700 900 1100 1300
Г13 68,3 75,6 93,1 95,2 114,7 123,8 127 130,8
Г20Х12Ф 72,3 79,2 91,2 101,5 109,2
Г21Х15Т 82,4 95,6 104,5 112 119,2
Х13Н13К10 90 100,8 109,6 115,4 119,6
Х19Н10К47 90,5 98,6 105,2 110,8
Р18 41,9 47,2 62,7 81,5 103,7 117,3 123,6 128,1
ЭХ12 31 36 53 75 97 119
40Х10С2М (ЭИ107) 86 91 101 112 122

Хромистые нержавеющие стали

Хромистые нержавеющие стали имеют высокую концентрацию атомов хрома, что увеличивает их удельное сопротивление — электропроводность такой нержавеющей стали не высока. При обычных температурах ее сопротивление составляет (50…60)·10-8 Ом·м.

Удельное электрическое сопротивление хромистых нержавеющих сталей ρэ·108, Ом·м
Марка стали 20 100 300 500 700 900 1100 1300
Х13 50,6 58,4 76,9 93,8 110,3 115 119 125,3
2Х13 58,8 65,3 80 95,2 110,2
3Х13 52,2 59,5 76,9 93,5 109,9 114,6 120,9 125
4Х13 59,1 64,6 78,8 94 108

Хромоникелевые аустенитные стали

Хромоникелевые аустенитные стали также являются нержавеющими, но за счет добавки никеля имеют удельное сопротивление почти в полтора раза выше, чем у хромистых — оно достигает величины (70…90)·10-8 Ом·м.

Удельное электрическое сопротивление хромоникелевых нержавеющих сталей ρэ·108, Ом·м
Марка стали 20 100 300 500 700 900 1100
12Х18Н9 74,3 89,1 100,1 109,4 114
12Х18Н9Т 72,3 79,2 91,2 101,5 109,2
17Х18Н9 72 73,5 92,5 103 111,5 118,5
Х18Н11Б 84,6 97,6 107,8 115
Х18Н9В 71 77,6 91,6 102,6 111,1 117,1 122
4Х14НВ2М (ЭИ69) 81,5 87,5 100 110 117,5
1Х14Н14В2М (ЭИ257) 82,4 95,6 104,5 112 119,2
1х14Н18М3Т 89 100 107,5 115
36Х18Н25С2 (ЭЯ3С) 98,5 105,5 110 117,5
Х13Н25М2В2 103 112,1 118,1 121
Х7Н25 (ЭИ25) 109 115 121 127
Х2Н35 (ЭИ36) 87,5 92,5 103 110 116 120,5
Н28 84,2 89,1 99,6 107,7 114,2 118,4 122,5

Жаропрочные и жаростойкие стали

По своим электропроводящим свойствам жаропрочные и жаростойкие стали близки к хромоникелевым. Высокое содержание в этих сплавах хрома и никеля не позволяет им проводить электрический ток, подобно обычным углеродистым с высокой концентрацией железа.

Значительное удельное электросопротивление и высокая рабочая температура таких сталей делают возможным их применение в качестве рабочих элементов электрических нагревателей. В частности, сталь 20Х23Н18 по своему сопротивлению и жаростойкости в некоторых случаях способна заменить такой популярный сплав для нагревателей, как нихром Х20Н80.

Удельное электрическое сопротивление жаропрочных и жаростойких сталей ρэ·108, Ом·м
Температура, °С 15Х25Т
(ЭИ439)
15Х28
(ЭИ349)
40Х9С2
(ЭСХ8)
Х25С3Н
(ЭИ261)
20Х23Н18
(ЭИ 417)
Х20Н35
0 106
20 75 80
100 97
200 98 113
400 102 105 120
600 113 115 124
800 122 121 128
900 123
1000 127 132

Источники:

  1. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования. 2–е издание, дополненное и переработанное. — М.: Металлургия, 1975 — 368 с.
  2. Физические величины. Справочник. Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
Читайте также

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Captcha *

Подписаться, не комментируяВсе комментарии модерируются. Спам будет удален!