Теплопроводность и плотность стекла, свойства фарфора, фаянса, хрусталя
Теплопроводность стекла при различных температурах
В таблице представлены значения коэффициента теплопроводности стекол различной плотности в зависимости от температуры. Теплопроводность стекла приведена при отрицательной и положительной температуре — в интервале от 4 до 1140 К (-269…867°С).
Рассмотрены такие типы стекол, как: кварцевое стекло (плавленый кварц), крон (легкий ЛК5 и баритовой серии 100БК110), стекло боросиликатное (С38-1, С39-1, С47-1, пирекс), известково-натриевое, свинцово-тугоплавкое, фарфор, фаянс, флинт (тяжелый ТФ1 и баритовый БФ8), хрусталь с плотность 2600…2850 кг/м3.
Теплопроводность стекол различных типов при комнатной температуре лежит в диапазоне от 0,7 до 1,6 Вт/(м·град). Например, теплопроводность кварцевого стекла при комнатной температуре составляет величину 1,36 Вт/(м·град); теплопроводность хрусталя находится в пределах 0,88-0,91 Вт/(м·град); теплопроводность фарфора имеет величину 1,68 Вт/(м·град).
При низких отрицательных температурах стекло обладает теплопроводностью 0,13-0,4 Вт/(м·град). При увеличении температуры стекла его теплопроводность возрастает. При высоких температурах теплопроводность стекла увеличивается до значения 2-2,25 Вт/(м·град).
Примечание: Размерность теплопроводности в таблице Вт/(м·град), все образцы отожженые, теплопроводность стекол соответствует указанным в таблице температурам, возможна интерполяция данных.
Плотность стекла
В таблице представлены значения плотности стекол распространенных типов при температуре от 0 до 50°С в размерности кг/м3. Следует отметить, что плотность стекла находится в широком диапазоне — от 2180 до 8000 кг/м3 и зависит от состава стекла, его температуры и режима термообработки.
К стеклам с низкой плотностью относятся: викор, кварцевое стекло, пирекс. Плотность обыкновенного оконного стекла составляет величину около 2500 кг/м3, что сравнимо с плотностью сплавов алюминия. К стеклам с высокой плотностью можно отнести стекла, содержащие оксиды тяжелых металлов. Например, стекла с большим содержанием (до 80%) оксидов бария BaO и свинца PbO, висмута, талия, вольфрама обладают плотностью около 8000 кг/м3 — их удельный вес может превышать величину плотности стали.
Необходимо отметить, что плотность стекла зависит от температуры. При нагревании стекла его плотность снижается из-за увеличения объема за счет теплового расширения. В процессе нагрева плотность стекла снижается в среднем на 7,5 кг/м3 на каждые 50 градусов температуры.
Термообработка также влияет на величину плотности стекла. В процессе закалки и отжига стекла изменяется его внутренняя структура. При закалке фиксируется состояние высокотемпературной структуры расплава, которая обладает большим объемом, чем структура стекла, подвергнутого длительному отжигу. В результате термообработки плотность закаленного стекла становиться ниже на 4-5%, по сравнению с отожженным.
Экспериментально определить плотность стекла или изделия из него можно с высокой точностью по методу пикнометра или с помощью гидростатических весов. Метод гидростатического взвешивания основан на законе Архимеда и сводится к определению объема вытесненной стеклом жидкости.
Вид стекла | Плотность стекла, кг/м3 | Вид стекла | Плотность стекла, кг/м3 |
---|---|---|---|
Алюмосиликатное (20% Al2O3) | 2530 | Натрий-кальцийсиликатное | 2400-2550 |
Боросиликатное термостойкое | 2200-2400 | Обыкновенное | 2400-2800 |
Викор | 2180 | Пирекс | 2230-2250 |
Высокосвинцовое | 5400-6200 | Свинцовосиликатное (21% PbO) | 2860 |
Кварцевое | 2200 | Флинтглас | 3900-5900 |
Стекло оконное | 2470 | Хрусталь | 2600-4000 |
В следующей таблице представлена плотность оптического бесцветного стекла обычных марок по ГОСТ 3514 при комнатной температуре.
Марка стекла | Плотность, кг/м3 | Марка стекла | Плотность, кг/м3 |
---|---|---|---|
ЛК3 | 2460 | К14 | 2530 |
ЛК4 | 2330 | К19 | 2620 |
ЛК6 | 2300 | БК4 | 2760 |
ЛК7 | 2300 | БК6 | 2860 |
ФК14 | 3390 | БК8 | 2850 |
К8 | 2520 | БК10 | 3120 |
БК13 | 3040 | ТК2 | 3200 |
ТК4 | 3580 | ТК8 | 3610 |
ТК12 | 3060 | ТК13 | 3440 |
ТК14 | 3510 | ТК16 | 3560 |
ТК17 | 3660 | ТК20 | 3580 |
ТК21 | 3980 | ТК23 | 3240 |
СТК3 | 3910 | СТК7 | 4220 |
СТК9 | 4110 | БФ11 | 3660 |
СТК12 | 3460 | БФ12 | 3670 |
СТК19 | 4090 | БФ13 | 3820 |
КФ4 | 2570 | БФ16 | 4020 |
КФ6 | 2520 | БФ21 | 3560 |
КФ7 | 2510 | БФ24 | 3670 |
БФ1 | 2670 | БФ25 | 3470 |
БФ6 | 3160 | БФ28 | 3960 |
БФ7 | 3230 | ТБФ4 | 4460 |
БФ8 | 3280 | ЛФ5 | 3230 |
ЛФ9 | 2610 | ЛФ10 | 2730 |
Ф1 | 3570 | Ф4 | 3670 |
Ф6 | 3480 | Ф9 | 2930 |
Ф13 | 3630 | ТФ1 | 3860 |
ТФ2 | 4090 | ТФ3 | 4460 |
ТФ4 | 4650 | ТФ5 | 4770 |
ТФ7 | 4520 | ТФ8 | 4230 |
ТФ10 | 5190 | ОФ1 | 2560 |
Удельная теплоемкость стекла
В таблице представлена удельная теплоемкость стекла различных видов и плотности в зависимости от температуры. Теплоемкость стекол дана в интервале температуры от 173 до 1473 К (-100…1200 °С). Размерность теплоемкости в таблице кДж/(кг·град).
Приведена удельная теплоемкость следующих стекол: стекло кварцевое, крон, натриевое, оконное, пирекс, термометрическое стекло, стекло флинт, стекла из природных силикатов: анорит, альбит, волластонит, диопсид, микроклин.
Удельная теплоемкость стекла основных типов находится в диапазоне 490…1125 Дж/(кг·град). К примеру, удельная теплоемкость силикатных стекол находится в диапазоне от 300 до 1050 Дж/(кг·град) и зависит от состава стекла. Низкая теплоемкость характерна для стекол с высоким содержанием тяжелых элементов — таких, как барий или свинец — это относится в первую очередь к тяжелым кронам и флинтам. К стеклам с высокой теплоемкостью при обычных температурах можно отнести такие, как: пирекс, натриевое стекло, термометрическое.
Следует отметить, что удельная теплоемкость стекла зависит от температуры — при нагревании стекла ее значение увеличивается. Например, удельная теплоемкость кварцевого стекла при температуре 1200°С на 25-30% выше этой величины при 20°С.
Теплоемкость, состав и другие физические свойства фарфора
В таблице представлен состав, тепловые и физические свойства фарфора при комнатной температуре.
Свойства фарфора указаны для следующих типов: установочный, низковольтный фарфор, высоковольтный и химически стойкий.
Представлены следующие свойства фарфора:
- состав фарфора;
- твердость по Моосу;
- удельная теплоемкость фарфора, кДж/(кг·град);
- теплопроводность стекла, Вт/(м·град);
- удельное электрическое сопротивление Ом·м;
- пробивное напряжение, кВ/мм;
- граница огнеупорности, К.
Следует особо отметить такое свойство фарфора, как теплоемкость. Удельная теплоемкость фарфора составляет от 750 до 925 Дж/(кг·град). Наибольшим значением теплоемкости обладает установочный фарфор, наименьшим — химически стойкий.
Теплофизические свойства фаянса
В таблице представлены теплофизические свойства фаянса при комнатной температуре.
Свойства фаянса даны для следующих типов: глинистый, известковый фаянс, полевошпатовый фаянс: хозяйственный, санитарно-технический.
В таблице приведены следующие свойства фаянса:
- плотность фаянса, кг/м3;
- пористость, %;
- коэффициент теплового расширения (КТР), 1/град;
- предел прочности на сжатие, кГ/см2;
- предел прочности на изгиб, кГ/см2;
- теплопроводность фаянса, Вт/(м·град).
Источники:
- Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина, А. М. Братковский и др. Под ред. И. С. Григорьева, Е. З. Мейлихова. — М.: Энергоатомиздат, 1991. — 1232 с.
- Стекло: Справочник. Под ред. Н. М. Павлушкина. М.: Стройиздат, 1973.
- Чиркин В.С. Теплофизические свойства материалов ядерной техники.
- Сентюрин Г. Г., Павлушкин Н. М. и др. Практикум по технологии стекла и ситаллов — 2-е изд. перераб. и доп. М.: Стройиздат, 1970.
- ГОСТ 13569-78 Стекло оптическое бесцветное Физико-химические характеристики. Основные параметры